
SECTION 2.1 

EXAMPLE 21 

EXAMPLE 2.2 

Introduction 
The first step in looking at data is to describe the data at hand in some concise way. 
In smaller studies this step can be accomplished by listing each data point. In general, 
however, this procedure is tedious or impossible and, even if it were possible, would 
not give an overall picture of what the data look like. 

Cancer, Nutrition Some investigators have proposed that consumption of vitamin A prevents 
cancer. To test this theory, a dietary questionnaire to collect data on vitamin-A consumption 
among 200 hospitalized cancer cases and 200 controls might be used. The controls would be 
matched on age and sex to the cancer cases and would be in the hospital at the same time for 
an unrelated disease. What should be done with these data after they are collected? mmm 

Before any formal attempt to answer this question can be made, the vitamin-A 
consumption among cases and controls must be described. Consider Figure 2.1. The 
bar graphs show visually that the controls have a higher vitamin-A consumption than 
the cases do, particularly in doses higher than the recommended daily allowance (RDA) . 

Pulmonary Disease Medical researchers have often suspected that passive smokers-people 
who themselves do not smoke but who live or work in an environment where others smoke- 
might have impaired pulmonary function as a result. In 1980 a research group in San Diego 
published results indicating that passive smokers did indeed have significantly lower pulmonary 
function than comparable nonsmokers who did not work in smoky environments [I]. As sup- 
porting evidence, the authors measured the carbon-monoxide (CO) concentrations in the working 
environments of passive smokers and of nonsmokers (where no smoking was permitted in the 
workplace) to see if the relative CO concentration changed over the course of the day. These 
results are displayed in the form of a scatter plot in Figure 2.2. w.. 

Figure 2.2 clearly shows that the CO concentrations in the two working environ- 
ments are about the same early in the day but diverge widely in the middle of the day 
and then converge again after the working day is over at 7 P.M. 

Graphic displays illustrate the important role of descriptive statistics, which is to 
quickly display data to give the researcher a clue as to the principal trends in the data 
and suggest hints as to where a more detailed look at the data, using the methods of 
inferential statistics, might be worthwhile. Descriptive statistics are also crucially 
important in conveying the final results of studies in written publications. Unless it is 
one of their primary interests, most readers will not have time to critically evaluate 
the work of others but will be influenced mainly by the descriptive statistics presented. 
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FIGURE 2.1 
Daily vitamin-A 

consumption among 
cancer cases and 

controls 

I 112 RDA* 112, I 1 > 1 , 1 2  

Consumption in RDA* 

*RDA = Recommended Daily Allowance 

What makes a good graphic or numeric display? The principal guideline is that 
the material should be as self-contained as possible and should be understandable 
without reading the text. These attributes require clear labeling. The captions, units, 
and axes on graphs should be clearly labeled, and the statistical terms used in tables 
and figures should be well defined. The quantity of material presented is equally 
important. If bar graphs are constructed, then care must be taken that neither too many 
nor too few groups be displayed. The same is true of tabular material. 

Many methods are available for summarizing data in both numeric and graphic 
fom.  In this chapter the methods are summarized and their strengths and weaknesses 
given. 

SECTION 2.2 Measures of Central Location 

The basic problem of statistics can be stated as follows: Consider a sample of data 
x,, . . . , x,, where xl corresponds to the first sample point and x, corresponds to the 
nth sample point. Presuming that the sample is drawn from some population P ,  what 
inferences or conclusions can be made about P from the sample? 
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FIGURE 2.2 
Mean carbon- 

monoxide 
concentration 

(& standard error] by 
time of day as 

measured in the 
working environment of 

passive smokers and 
nonsmokers who work 

in nonsmoking 
environments 

2.2 .I 

TABLE 2.1 
Sample of birthweights 

of live-born infants born 
at a private hospital in 
San Diego, California, 

during a I-week 
period (g) 

Passive smokers 

Nonsmokers who work 
in nonsmoking environment I 

7 8 9 1 0 1 1 1 2 1  2 3 4 5 6 7  
A.M. Noon P.M. 

Source: Reproduced with permission of The New England Journal of Medicine, 
302,720-723, 1980. 

Before this question can be answered, the data must be summarized as succinctly 
as possible, since the number of sample points is frequently large and it is easy to 
lose track of the overall picture by looking at all the data at once. One type of measure 
useful for summarizing data defines the center, or middle, of the sample. This type 
of measure is a measure of central location. 

The Arithmetic Mean 

How to define the middle of a sample may seem obvious, but the more you think 
about it, the less obvious it becomes. Suppose the sample consists of birthweights of 
all live-born infants born at a private hospital in San Diego, California, during a 
1-week period. This sample is shown in Table 2.1. 



8 CHAPTER 2 1 DESCRIPTIVE STATISTICS 

One measure of central location for this sample is the arithmetic mean (colloquially 
referred to as the average). The arithmetic mean (or mean or sample mean) is usually 
denoted by T. 

DEFINITION 2.1 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmwmmmmmmmmmm 
The arithmetic mean is the sum of the all the observations divided by the number of obser- 
vations. It is written in statistical terms as 

The sign 2 (sigma) in Definition 2.1 is referred to as a summation sign. The expression 

is simply a short way of writing the quantity (xl  + x2 + . + x,). 

r 

If a and b are integers, then 

b 

C xi 
i=u 

means that 

(1) The value of a is substituted for i and xu is used as the first term in the summation. 

(2) The value of i is increased by 1 to a + 1 and xu+, is added to x,. 

(3) Step 2 is repeated as many times as possible until i = b. 

EXAMPLE 2.3 ~f 

The term xb is the last term in the summation. Thus, 

b 
If a = b, then Ei=, xi = xu. One fundamental property of summation signs is that 
if each term in the summation is a multiple of the same constant c, then c can be 
factored out from the summation; that is, 

find 

SOLUTION 



MEASURES OF CENTRAL LOCATION I SECTION 2.2 9 

EXAMPLE 2.4 

2.2.2 

DEFINITION 2.2 

EXAMPLE 2.5 

SOLUTION 

It is important to become familiar with summation signs, because they are used 
extensively in the remainder of this text. 

What is the arithmetic mean for the sample of birthweights in Table 2. l? 

The arithmetic mean is, in general, a very natural measure of central location. 
One of its principal limitations, however, is that it is overly sensitive to extreme values. 
In this instance it may not be representative of the location of the great majority of 
the sample points. For example, if the first infant in Table 2.1 happened to be a 
premature infant weighing 500 g rather than 3265 g, then the arithmetic mean of the 
sample would be reduced to 3028.7 g. In this instance, 7 of the birthweights would 
be lower than the arithmetic mean, and 13 would be higher than the arithmetic mean. 
It is possible in extreme cases for all but one of the sample points to be on one side 
of the arithmetic mean. The arithmetic mean is a poor measure of central location in 
these types of samples, since it does not reflect the center of the sample. Nevertheless, 
the arithmetic mean is by far the most widely used measure of central location. 

The Median 

An alternative measure of central location, perhaps second in popularity to the arith- 
metic mean, is the median or, more precisely, the sample median. 

Suppose there are n observations in a sample. If these observations are ordered 
from smallest to largest, then the median is defined as follows: 

n + l  
(1) The (---Z--)th largest observation if n  is odd 

(2) The average of the th largest observations if n  is even 

The rationale for these definitions is to ensure an equal number of sample points 
on both sides of the sample median. The median is defined differently when n is even 
and odd because it is impossible to achieve this goal with one uniform definition. For 
samples with an odd sample size, there is a unique central point; for example, for 
samples of size 7, the fourth largest point is the central point in the sense that 3 points 
are both smaller and larger than it. For samples with an even sample size, there is no 
unique central point and the middle 2 values must be averaged. Thus, for samples of 
size 8, the fourth and fifth largest points would be averaged to obtain the median, 
since neither is the central point. 

Compute the sample median for the sample in Table 2.1 I 
First, arrange the sample in ascending order: I 
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Since n is even, 

EXAMPLE 2.6 

TABLE 2.2 
Sample of admission 

white-blood counts for 
all patients entering a 
hospital in Allentown, 

PA, on a given day 
(x  1000) 

SOLUTION 

Sample median = average of the 10th and 1 lth largest observations 

= (3245 + 3248)/2 = 3246.5 g DDD 

Infectious Disease Consider the d ~ t a  set in Table 2.2, which consists of white-blood counts 
taken on admission of all patients entering a small hospital in Allentown, Pennsylvania, on a 
given day. Compute the median white-blood count. 

First, order the sample as follows: 3, 5, 7, 8, 8, 9, 10, 12, 35. Since n is odd, the sample 
median is given by the fifth largest point, which equals 8. DDD 

The principal strength of the sample median is that it is insensitive to very large 
or very small values. In particular, if the second patient in Table 2.2 had a white count 
of 65,000 rather than 35,000, the sample median would remain unchanged, since the 
fifth largest value is still 8000. Conversely, the arithmetic mean would increase dra- 
matically from 10,778 in the original sample to 14,111 in the new sample. The principal 
weakness of the sample median is that it is determined mainly by the middle points 
in a sample and is less sensitive to the actual numerical values of the remaining data 
points. 

Comparison of the Arithmetic Mean and the Median 

If a distribution is symmetric, then the relative position of the points on each side of 
the sample median will be the same. Examples of distributions expected to be roughly 
symmetric include the distribution of birthweights in Table 2.1 and the distribution of 
systolic blood-pressure measurements taken on all 30-39-year-old factory workers in 
a given workplace [Figure 2.3 (a)]. 

If a distribution is positively skewed (or skewed to the right), then points above 
the median will tend to be farther from the median in absolute value than points below 
the median. An example of such a distribution would be the distribution of the number 
of years of oral contraceptive (OC) use by a group of women aged 20-29 years [Figure 
2.3(b)]. Similarly, if a distribution is negatively skewed (or skewed to the left), then 
points below the median will tend to be farther from the median in absolute value 
than points above the median. An example of such a distribution would be the dis- 
tribution of relative humidities observed in a humid climate at the same time of day 
over a number of days. In this case, most of the humidities will be at or close to 
loo%, with a few very low humidities on dry days [Figure 2.3(c)]. 
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FIGURE 2.3 
Graphic displays of 

(a) symmetric, (b) 
positively skewed, and 
(c) negatively skewed 

distributions 
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Systolic Blood Pressure 

(a) 

0 1 2 3 4 5 6 7 8 9 1 0  
Years of OC use 

(b) 

Relative Humidity 

(a 

In many samples, the relationship between the arithmetic mean and the sample 
median can be used to assess the symmetry of a distribution. In particular, for symmetric 
distributions, the arithmetic mean will be approximately the same as the median. For 
positively skewed distributions, the arithmetic mean will tend to be larger than the 
median; for negatively skewed distributions, the arithmetic mean will tend to be smaller 
than the median. 

2.2.4 The Mode 

Another widely used measure of central location is the mode. 
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DEFINITION 2.3 

EXAMPLE 2.7 

TABLE 2.3 
Sample of time 

intervals between 
successive menstrual 

periods of college- 
aged women (days] 

EXAMPLE 2.8 

SOLUTION 

EXAMPLE 2.9 

SOLUTION 

Family Planning Consider the sample of time intervals between successive menstrual periods 
for a group of 500 college women aged 18-21, as shown in Table 2.3. The frequency column 
gives the number of women who reported each of the respective durations. Twenty-eight days 
is the mode, since it is the most frequently occurring value. mm. 

.................................................................... 
Value Frequency Value Frequency Value Frequency 

Compute the mode of the distribution in Table 2.2. I 
The mode is 8000 because it occurs more frequently than any other white count. ... I 

Some distributions have more than one mode. In fact, one useful method of 
classifying distributions is by the number of modes present. A distribution with one 
mode is referred to as unimodal; two modes, bimodal; three modes, trimodal; and 
so forth. 

Compute the mode of the distribution in Table 2.1. I 
There is no mode, since all the values occur exactly once. .mw I 

Example 2.9 illustrates a common problem with the mode: It is not a useful 
measure of location if there are a large number of possible values, each of which 
occurs infrequently. In such cases the mode will either be far from the center of the 
sample or, in extreme cases, will not exist, as in Example 2.9. The mode is not used 
much in this text because its mathematical properties are, in general, rather intractable, 
and in most common situations it is inferior to the arithmetic mean. 

The Geometric Mean 

Much laboratory data, specifically data in the form of concentrations of one substance 
in another, as assessed by serial dilution techniques, are either multiples of 2 or are 
a constant multiplied by a power of 2; that is, they can have outcomes only of the 
form 2 k ~ ,  k = 0, 1 ,  . . . , for some constant c.  For example, the data in Table 2.4 
represent the minimal inhibitory concentration (MIC) of penicillin G in the urine for 
N. gonorrhoeae in 74 patients [2]. The arithmetic mean would not be appropriate as 
a measure of central location in this situation because the distribution is very skewed. 
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TABLE 2.4 
Distribution of minimal 

inhibitory concentration 
(MIC] of penicillin G for 

N. gonorrhoeae 

DEFINITION 2.4 

EXAMPLE 2.10 

SOLUTION 

(pg/mL) Concentration Frequency (pg/mL) Concentration Frequency 

0.03125 = 2O(0.03125) 21 0.250 = 23(0.03125) 19 
0.0625 = 2l(0.03125) 6 0.50 = 24(0.03125) 17 
0.125 =22(0.03125) 8 1.0 = 25(0.03125) 3 

Source: Reproduced with permission from JAMA, 220, 205-208, 1972. Copyright 1972, American 
Medical Association. 

However, the data do have a certain pattern since the only possible values are of the 
form 2k(0.03125) for k = 0, 1, 2 . . . . One solution is to work with the distribution 
of the logs of the concentrations. The log concentrations have the property that suc- 
cessive possible concentrations differ by a constant; that is, 10g(2~+lc) - 10g(2~c) = 
10g(2~+') + log c - 10g(2~) - log c = (k + 1)log 2 - k log 2 = log 2. Thus, the 
log concentrations are equally spaced from each other, and the resulting distribution 
is now not as skewed as the concentrations themselves. The arithmetic mean could 
then be computed in the log scale, that is, 

1 
log x = - C log xi 

n i = 1  

and used as a measure of location. However, it is usually preferable to work in the 
original scale by taking the antilogarithm of log x to form the geometric mean, which 
leads to the following definition: 

. . . . . . B . . . W . . W . . . . . ~ M M B W D M ~ ~ W W U W W W W D B ~ W W W B B W W W B M ~ W D W W H B B W B H ~ ~ ~ ~ W ~  

The geometric mean is the antilogarithm of log x,  where 

- 1 
log x = - C log xi 

Y1 i = l  

Any base can be used to compute logarithms for the geometric mean. The geometric 
mean will be the same regardless of which base is used. The only requirement is that 
the logs and antilogs in Definition 2.4 should be in the same base. Bases often used 
in practice are base 10 and base e; logs and antilogs using these bases can be computed 
using many pocket calculators. 

Infectious Disease Compute the geometric mean for the sample in Table 2.4. 

1. For convenience, use base 10 to compute the logs and antilogs in this example. 
2. Compute 

log x = [21 log(O.03 125) + 6 log(0.0625) + 8 log(0.125) 

+ 19 log(0.250) + 17 log(0.50) + 3 log(1 .O)]/74 = -0.846 

3. The geometric mean = the antilogarithm of -0.846 = 0.143. 
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SECTION 2.3 Some Properties of the Arithmetic Mean 

Consider a sample x,, . . . , x,, which will be referred to as the original sample. To 
create a translated sample xl + c, . . . , x, + c, add a constant c to each data point. 
Let yi = xi + c, i = 1, . . . , n. Suppose we want to compute the arithmetic mean 
of the translated sample. We can show that the following relationship holds: 

EXAMPLE 2.11 

TABLE 2.5 
Translated sample for 

duration between 
successive menstrual 

periods in college- 
aged women 

Therefore, to find the arithmetic mean of the y's, compute the arithmetic mean of the 
x's and add the constant c. 

This principle is useful because it is sometimes convenient to change the "origin" 
of the sample data, that is, compute the arithmetic mean after the translation and 
transform back to the original origin. 

In Table 2.3 it is more convenient to work with numbers that are near 0 than with numbers 
near 28 to compute the arithmetic mean of the time interval between menstrual periods. Thus, 
a translated sample might first be created by subtracting 28 days from each outcome in Table 
2.3. The arithmetic mean of the translated sample could then be found and 28 added to get the 
actual arithmetic mean. The calculations are shown in Table 2.5. 

.................................................................... 
Value Frequency Value Frequency Value Frequency 

-4 5 1 96 6 7 
-3 10 2 63 7 3 
-2 28 3 24 8 2 
-1 64 4 9 9 1 

0 185 5 2 10 1 
.................................................................... 
Note: p = [(-4)(5) + (-3)(10) + . . a + (10)(1)]/500 = 0.54 

x = y + 28 = 0.54 + 28 = 28.54 days .m. 

Similarly, systolic blood-pressure scores are usually between 100 and 200. It is 
easy to subtract 100 from each blood-pressure score, find the mean of the translated 
sample, and add 100 to obtain the mean of the original sample. 

What happens to the arithmetic mean if the units or scale being worked with are 
changed? A rescaled sample can be created: 

yi = exi, i = 1, . . . , n 

The following result holds: 

y i = c x .  1 9  i =  I , .  . . , n  

7 = cx 
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Therefore, to find the arithmetic mean of the y's, compute the arithmetic mean of the 
x's and multiply it by the constant c .  

EXAMPLE 2.12 Express the mean birthweight for the data in Table 2.1 in ounces rather than grams. 

SOLUTION We know that 1 oz = 28.35 g and that x = 3166.9 g. Thus, if the data were expressed in terms 

of ounces, 

C = -  and (3166.9) = 111.71 oz 
7=28.35 28.35 

Sometimes we want to change both the origin and the scale of the data at the 
same time. To do this, apply (2.1) and (2.2) as follows: 

Let x,, . . . , x, be the original sample of data and let yi = clxi + c2, i = 1, . . . , n, repre- 
sent a transformed sample obtained by multiplying each original sample point by a factor c, 
and then shifting over by a constant c,. 

If yi = c,xi -I c,, i = 1, . . . , n 

then 7 = clX + c, 

EXAMPLE 2.13 If we have a sample of temperatures in O C  with an arithmetic mean of 11.75", then what is the 
arithmetic mean in O F ?  

SOLUTION Let yi denote the O F  temperature that corresponds to a O C  temperature of xi. Since the required 
transformation to convert the data to O F  would be 

the arithmetic mean would be I 

SECTION 2.4 Measures of Spread 

Consider the two samples shown in Figure 2.4. They represent two samples of cho- 
lesterol measurements, each on the same person, but using different measurement 
techniques. They appear to have about the same center, and whatever measure of 
central location is used will probably be about the same in the two samples. In fact, 
the arithmetic means are both 200 mg%/mL. However, the two samples visually appear 
to be radically different. This difference lies in the greater variability, or spread, of 
the Autoanalyzer method relative to the Microenzymatic method. In this section, the 
notion of variability will be quantified. Many samples can be well described by the 
combination of a measure of central location and a measure of spread. 
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FIGURE 2.4 
Two samples of 

cholesterol 
measurements on a 

given person using an 
Autoanalyzer and a 

Microenzymatic 
measurement 

technique 

x = 200 
I 
I 
I 
I 

a  a -  . a  A  - - - - - Autoanalyzer method 
177 193 195 I 209 226 (mg %/mL) 

I 
I 
I 
I 

A  - a -  a  - - - - Microenzymatic method 
192 197/1 202 209 (mg %/mL) 

2.4.1 The Range 

Several different measures can be used to describe the variability of a sample. Perhaps 
the simplest measure is the range. 

EXAMPLE 214 The range in the sample of birthweights in Table 2.1 is 

4146 - 2069 = 2077 g 

EXAMPLE 215 Compute the ranges for the Autoanalyzer- and Microenzymatic-method data in Figure 2.4 and 
compare the variability of the two methods. 

SOLUTION The range for the Autoanalyzer method = 226 - 177 = 49 mg%/mL. The range for the 
Microenzymatic method = 209 - 192 = 17 mg%/mL. The Autoanalyzer method clearly seems 
more variable. BBB 

One advantage of the range is that it is very easy to compute once the sample 
points are ordered. One striking disadvantage is that it is very sensitive to extreme 
observations. Hence, if the lightest infant in Table 2.1 weighed 500 g rather than 
2069 g, then the range would increase dramatically to 4146 - 500 = 3646 g. 
Another disadvantage of the range is that it depends on the sample size (n). That is, 
the larger n is, the larger the range tends to be. This complication makes it difficult 
to compare ranges from different sized data sets. 

Another approach that addresses some of the shortcomings of the range in quantifying 
the spread in a data set is the use of quantiles or percentiles. Intuitively, the pth 
percentile is the value Vp such that p percent of the sample points are less than or 
equal to Vp. The median, being the 50th percentile, is a special case of a quantile. As 
was the case for the median, a different definition is needed for the pth percentile, 
depending on whether np/100 is an integer or not. 
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DEFINITION 2.6 

EXAMPLE 2.16 

SOLUTION 

EXAMPLE 2.17 

SOLUTION 

2.4.3 

. . . . D . B . B . . . . . W . W . . H W ~ ~ U B W ~ W W W M ~ ~ W W D D ~ D D ~ B ~ ~ B I B W H W ~ W W M H ~ W ~ ~ ~ H D ~ B D  

The pth percentile is defined by 

(1) The (k + 1)th largest sample point if np/100 is not an integer (where k is the largest integer 
less than np1100) 

(2) The average of the (np/lOO)th and (np/100 + 1)th largest observations if np/100 is an 
integer. 

The spread of a distribution can be characterized by specifying several percentiles. 
For example, the 10th and 90th percentiles are often used to characterize spread. 
Percentiles have the advantage over the range of being less sensitive to outliers and 
of not being much affected by the sample size (n). 

Compute the 10th and 90th percentile for the birthweight data in Table 2.1. 

Since 20 X .1 = 2 and 20 x .9 = 18 are integers, the 10th and 90th percentiles are defined 

by 

10th percentile: average of the 2nd and 3rd largest values = (2581 + 2759)/2 = 2670 g 

90th percentile: average of the 18th and 19th largest values = (3609 + 3649)/2 = 3629 g 

We would estimate that 80 percent of birthweights will fall between 2670 g and 3629 g, which 
gives us an overall feel for the spread of the distribution. wmm 

Compute the 20th percentile for the white-count data in Table 2.2. 

Since np/100 = 9 x .2 = 1.8 is not an integer, the 20th percentile is defined by the (I + 1)th 
largest value = 2nd largest value = 5000. mmm 

To compute percentiles, the sample points must be ordered. This can be difficult if n 
is even moderately large. An easy way to accomplish this is to use a stem-and-leaf 
plot (see Section 2.8.3). 

There is no limit to the number of percentiles that can be computed. The most 
useful number is often determined by the sample size and by subject-matter consid- 
erations. Frequently used percentiles are quartiles (25th, 5Oth, and 75th percentiles), 
quintiles (20th, 40th, 60th, and 80th percentiles), and deciles (loth, 20th, . . . , 90th 
percentiles). It is almost always instructive to look at some of the quantiles to get an 
overall impression of the spread and the general shape of a distribution. 

The Variance and Standard Deviation 

The principal difference between the Autoanalyzer- and Microenzymatic-method data 
in Figure 2.4 is that the Microenzymatic-method values are in some sense closer to 
the center of the sample than the Autoanalyzer-method values are. If the center of the 
sample is defined as the arithmetic mean, then a measure that can summarize the 
difference (or deviations) between the individual sample points and the arithmetic 
mean, that is, 

- - 
XI -X,x2 - X , .  . . , x , -X  
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is needed. One simple measure that would seem to accomplish this goal is 

(xi - f )  
d =  

n 

Unfortunately, this measure will not work because of the following principle: 

The sum of the deviations of the individual observations of a sample about the sample mean 
is always 0. 

This can be seen as follows 

Sum of deviations = 2 (xi - x) = 2 xi - z f 
i= 1 i= 1 i = l  

However, from the definition of the sample mean, z:= xi = it. Furthermore, since 

f does not depend on i , 2 := f = IE. Therefore, 

Sum of deviations = rzE - it = 0 

EXAMPLE 2.18 Compute the sum of the deviations about the mean for the Autoanalyzer- and Microenzymatic- 
method data in Figure 2.4. 

SOLUTION For the Autoanalyzer-method data, 

For the Microenzymatic-method data, 

Thus, d does not help distinguish the difference in spreads between the two methods. 
A second idea is to use the squares of the deviations from the sample mean rather 

than the deviations themselves. The resulting measure of spread, denoted by s2 is 

The more usual form for this measure is with n - 1 in the denominator rather than 
with n. The resulting measure is called the sample variance (or variance). 

DEFINITION 2.7 DDDDDDDDDDDDDDD~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 

The sample variance, or variance, is defined as follows: 

Farzin Imani
Highlight

Farzin Imani
Rectangle



MEASURES OF SPREAD 1 SECTION 2.4 19 

DEFINITION 2.8 

EXAMPLE 2.19 

A rationale for using n - 1 in the denominator rather than n is presented in the 
discussion of estimation in Chapter 6. 

Another commonly used measure of spread is the sample standard deviation. 

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 

The sample standard deviation, or standard deviation, is defined as follows: 

SOLUTION 

the variance, as shown in equation 2.5. 

Compute the variance and standard deviation for the Autoanalyzer- and Microenzymatic-method 
data in Figure 2.4. 

Autoanalyzer method 

Microenzymatic method 

Thus, the Autoanalyzer method has a standard deviation roughly three times as large as that of 
the Microenzymatic method. BBB 

One problem in using the variance is that it is difficult to compute in its original 
form, since the sample mean must first be computed, then the deviation of each sample 
point about the sample mean must be computed, and then the squares of these deviations 
about the sample mean must be summed. This procedure introduces two extra steps, 
which make the computation both more cumbersome and more error prone, especially 
because many pocket calculators can accumulate both the sum and sum of squares of 
a sample in one pass. This problem can be solved by using alternative expressions for 

Two alternative formulas for the sample variance, 
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To obtain these expressions, recall from algebra that (a + b12 = a2 + 2ab + b2, and 
let a = xi,  b = -f. Then (xi - T ) ~  can be written in the form x? - 2xi% + z2. Thus, 
s2 can be rewritten as follows: 

Since - 2 5  and f2  are constants, EL1 (-2xi@ can be written as -2% c:=, xi and 

E:=, x2 as nT2, and the following expression can be obtained: 

It is sometimes more convenient to represent s2 in terms of 2:=, xi rather than 3. To 

accomplish this, substitute (C := xi/n) for x and obtain 

The first form is useful when the sample mean has already been computed, whereas 
the second form is useful if the sum and sum of squares of the observations have been 
computed, but the sample mean has not. Thus, the sample variance can be computed 
directly from the sum and the sum of squares of the individual observations. The 
second form is actually preferable from the standpoint of computational accuracy, since 
rounding error is often introduced in the computation of %. 

Similarly, the two short forms for the standard deviation can be written as follows: 

EXAMTLE 2.20 Compute the variance and standard deviation for the Autoanalyzer and Microenzymatic data in 
Figure 2.4 using the alternative computational forms. 

Farzin Imani
Highlight

Farzin Imani
Highlight

Farzin Imani
Rectangle



SOLUTION 

SECTION 2.5 

FIGURE 2.5 
Comparison of the 

variances of two 
samples, where one 

sample has an origin 
shifted relative to the 

other 

SOME PROPERTIES OF THE VARIANCE AND STANDARD DEVIATION 1 SECTION 2.5 

Autoanalyzer method 

Microenzymatic method 
5 

xi = 192 + 197 + 200 + 202 + 209 = 1000 
i=l 

5 

xf = 1922 + 1972 + 20O2 + 2022 + 2092 = 200,158 
r=l 

Alternatively, s2 could be represented in terms of X (= 200) by writing 

Some Properties of the Variance and Standard Deviation 
The same questions can be asked of the variance and standard deviation as of the 
arithmetic mean: namely, how are the variance and standard deviation affected by a 
change in origin or a change in the units being worked with? Suppose there is a sample 
XI, . . . , x, and all data points in the sample are shifted by a constant c; that is, a 
new sample yl, . . . , y, is created such that yi = xi + c, i = 1, . . . , n. 

In Figure 2.5, we would clearly expect that the variance and standard deviation 
would remain the same, since the relationship of the points in the sample relative to 
one another remains the same. This property is stated on the following page. 

TI TI TI TI TI TI 
A A A  A A A x sample 

T 7  T 1  7 7  T 1  T7 T 7  

1 1 1 1  1 1  y sample 
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Suppose there are two samples 

X l , . . . , X n  and Y l , . . . , Y n  

where y i = x i + c ,  i =  1, . . . ,  n 

If the respective sample variances of the two samples are denoted by 

S; and s; 

then s2 = 2 
Y Sx 

EXAMPLE 2.21 Compare the variances and standard deviations for the menstrual period data in Tables 2.3 
and 2.5. 

SOLUTION The variance and standard deviation of the two samples are the same, since the second sample 
was obtained from the first by subtracting 28 days from each data value; that is, 

Suppose the units are now changed so that a new sample yl ,  . . . , y, is created 
such that yi = cxi, i = 1, . . . , n. The following relationship holds between the 
variances of the two samples. 

Suppose there are two samples 

where 

Then 

This can be shown by noting that 

EXAMPLE 2.22 Compute the variance and standard deviation of the birthweight data in Table 2.1 in both grams 
and ounces. 

SOLUTION The original data are given in grams, so first compute the variance and standard deviation in 
these units. 
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THE COEFFICIENT OF VARIATION 1 SECTION 2.6 

SECTION 2.6 

DEFINITION 2.9 

EXAMPLE 2.23 

SOLUTION 

To compute the variance and standard deviation in ounces, note that 

Thus 
1 

s2 (02) = - s2(g) = 246.8 oz2 
28. 352 

1 
s (02) = --- 

28.35 
s (g) = 15.7 oz 

Thus, if the sample points change in scale by a factor of c, the variance changes 
by a factor of c2 and the standard deviation changes by a factor of c. This relationship 
is the main reason why the standard deviation is more often used than the variance as 
a measure of spread, since the standard deviation and the arithmetic mean are in the 
same units, whereas the variance and the arithmetic mean are not. Thus, as illustrated 
in Examples 2.12 and 2.22, both the mean and the standard deviation change by a 
factor of 28.35 in the birthweight data of Table 2.1 when the units are expressed in 
terms of ounces rather than grams. 

The mean and standard deviation are the most widely used measures of location 
and spread in the literature. One of the principal reasons for this is that the normal 
(or bell-shaped) distribution is defined explicitly in terms of these two parameters, and 
this distribution has wide applicability in many biological and medical settings. The 
normal distribution is discussed extensively in Chapter 5. 

The Coefficient of Variation 
It is useful to relate the arithmetic mean and the standard deviation together, since, 
for example, a standard deviation of 10 would mean something different conceptually 
if the arithmetic mean were 10 than if it were 1000. A special measure, called the 
coefficient of variation, is often used for this purpose. 

This measure remains the same regardless of what units are used, because if the units 
are changed by a factor c ,  both the mean and standard deviation change by the factor 
c; the CV, which is the ratio between them, remains unchanged. 

Compute the coefficient of variation for the data in Table 2.1 when the birthweights are expressed 
in either grams or ounces. 

If the data were expressed in ounces, then 

CV = 100% X (15.7 oz/111.71 oz) = 14.1% m.. I 
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The coefficient of variation is most useful in comparing the variability of several 
different samples, each with different arithmetic means. This is because a higher 
variability is usually expected when the mean increases, and the CV is a measure that 
accounts for this variability. Thus, if we are conducting a study where air pollution is 
measured at several sites and we wish to compare day-to-day variability at the different 
sites, we might expect a higher variability for the more highly polluted sites. A more 
accurate comparison could be made by comparing the CV's at different sites than by 
comparing the standard deviations. 

The coefficient of variation is also useful for comparing the reproducibility of 
different variables. Consider, for example, data from the Bogalusa Heart Study, a large 
study of cardiovascular risk factors in children [3]. 

TABLE 2.6 
Reproducibility of 

cardiovascular risk 
factors in children, 

Bogalusa Heart Study, 
1978-1979 

Height (cm) 364 
Weight (kg) 365 
Triceps skin fold (mm) 362 
Systolic blood pressure (mm Hg) 337 
Diastolic blood pressure (mm Hg) 337 
Total cholesterol (mg1dL) 395 
HDL cholesterol (mg/dL) 349 

-------.-------------------------------- 

Children in the study were seen at approximately 3-year intervals. Every 3 years, a 
subset of the children had replicate measurements a short time apart of cardiovascular 
risk factors. In Table 2.6 we present reproducibility data on a selected subset of 
cardiovascular risk factors. We note that the coefficient of variation ranges from 0.2% 
for height to 10.4% for HDL cholesterol. The standard deviations reported here are 
within-subject standard deviations based on the repeated assessments on the same 
child. Details on how within- and between-subject variation is computed will be covered 
at length in Chapter 9 when we discuss the random-effects analysis of variance model. 

Sometimes the sample size is prohibitively large to display all the raw data. Also, data 
are frequently collected in grouped form, since the required degree of accuracy to 
specify a measured quantity exactly is often lacking, because of either measurement 
error or imprecise patient recall. For example, systolic blood-pressure measurements 
taken with a standard cuff are usually specified to the nearest 2 rnm Hg, since assessing 
them with any more precision is difficult using this instrument. Thus, a stated mea- 
surement of 120 mrn Hg may actually imply that the reading is some number 2 119 
mm Hg and < 121 mm Hg. Similarly, because dietary recall is generally not very 
accurate, the most precise estimate of fish consumption might take the following form: 
2-3 servings per day, 1 serving per day, 5-6 servings per week, 2-4 servings per 
week, 1 serving per week, <1 serving per week and 2 1 serving per month, never. 
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TABLE 2.7 
Sample of birthweights 

from 100 consecutive 
deliveries (oz] 

GROUPED DATA / SECTION 2.7 

Consider the data set in Table 2.7, which represents the birthweights from 100 
consecutive deliveries at a Boston hospital. Suppose we wish to display these data for 
publication purposes. How can we do this? If the data are on a computer, then the 
simplest way to display the data would be to generate a frequency distribution using 
one of the common statistical packages. 

DEFINITION 2.10 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmwmmmmmmmmmmmmmwmmmmmm 

A frequency distribution is an ordered display of each value in a data set together with its 
frequency, that is, the number of times that value occurs in the data set. In addition, the 
percentage of sample points that take on a particular value is also typically given. 

A frequency distribution of the sample of 100 birthweights in Table 2.7 was generated 
using the Statistical Analysis System (SAS) package and is displayed in Table 2.8. 

The SAS frequency-distribution program provides the frequency, cumulative fre- 
quency (CUM FREQ) , relative frequency (PERCENT), and cumulative percent (CUM 
PERCENT) for each birthweight present in the sample. For any particular birthweight 
b, the cumulative frequency, or CUM FREQ, is the number of birthweights in the 
sample that are less than or equal to b. The PERCENT = 100 X FREQUENCY/n, 
while the cumulative percent (CUM PERCENT) = 100 x CUM FREQ/n = the 
percentage of birthweights less than or equal to b. 

If the number of unique sample values is large, then a frequency distribution may 
still be too detailed a summary for publication purposes. Instead, the data could be 
grouped into broader categories. Some general instructions for categorizing the data 
are provided in the following guidelines: 

1. Subdivide the data into k intervals, starting at some lower bound y1 and ending 
at some upper bound yk+ l. 

2. The first interval is from y1 inclusive to y2 exclusive; the second interval is 
from y2 inclusive to y3 exclusive; . . . ; the kth and last interval is from yk inclusive 
to yk+ exclusive. The rationale for this representation is to make certain that the group 
intervals include all possible values and do not overlap. These errors are common in 
the presentation of grouped data. 

3. The group intervals are generally chosen to be equal, although the appropri- 
ateness of equal group sizes should be dictated more by subject-matter considerations. 
Thus, equal intervals might be appropriate for the blood-pressure or birthweight data 
but not for the dietary-recall data, where the nature of the data dictates unequal group 
sizes corresponding to how most people remember what they eat. 
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TABLE 2.8 
Frequency, distribution 
of birthweight data in 

Table 2.7 using the 
Statistical Analysis 

System (SAS) 

.......................................................... 
SAMPLE OF BIRTHWEIGHTS FROM 100 CONSECUTIVE DELIVERIES (02.1 

BIRTHWT 

32 
5 8 
64 
67 
68 
83 
8 5 
86 
87 
88 
89 
91 
92 
93 
94 
95 
96 
98 
99 

100 
101 
102 
lo3  
lo4 
105 
lo6 
1 07 
lo8 
109 
11 0 
11 1 
112 
11 3 
115 
116 
118 
11 9 
120 
121 
122 
123 
124 
125 
I26 
127 
I28 
132 
133 
134 
135 
137 
I38 
140 
141 
144 
146 
155 
I61 

FREQUENCY 

1 
1 
1 
1 
1 
1 
2 
1 
1 
2 
3 
1 
1 
1 
2 
1 
1 
3 
1 
1 
1 
1 
1 
5 
2 
1 
1 
4 
2 
2 
1 
3 
1 
6 
1 
2 
1 
1 
3 
4 
1 
4 
2 
1 
2 
2 
3 
2 
1 
2 
1 
3 
1 
1 
1 
1 
1 
1 

CUM FREQ 

1 
2 
3 
4 
5 
6 
8 
9 

10 
12 
15 
16 
17 
18 
20 
2 1 
2 2 
2 5 
26 
27 
2 8 
2 9 
30 
35 
37 
38 
3 9 
43 
45 
47 
48 
5 1 
5 2 
58 
5 9 
6 1 
62 
63 
66 
70 
71 
75 
77 
78 
80 
82 
85 
87 
88 
90 
9 1 
94 
95 
96 
97 
98 
99 

100 

PERCENT 

1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
2 .ooo 
1 .ooo 
1 .ooo 
2.000 
3.000 
1 .ooo 
1 .ooo 
1 .ooo 
2 .ooo 
1 .ooo 
1 .ooo 
3.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
5 .ooo 
2 .ooo 
1 .ooo 
1 .ooo 
4.000 
2.000 
2.000 
1 .ooo 
3.000 
1 .ooo 
6.000 
1 .ooo 
2.000 
1 .ooo 
1 .ooo 
3.000 
4.000 
1 .ooo 
4.000 
2.000 
1 .ooo 
2 .ooo 
2 .ooo 
3 .OOO 
2 .ooo 
1 .ooo 
2.000 
1 .ooo 
3 .OOO 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 

CUM PERCENT 

1 .ooo 
2 .ooo 
3.000 
4 .OOO 
5 .OOO 
6.000 
8 .OOO 
9.000 

10.000 
12 .ooo 
15 .OOO 
16.000 
17.000 
18.000 
20.000 
21 .ooo 
22 .ooo 
25 .OOO 
26 .OOO 
27.000 
28.000 
29.000 
30.000 
35 .ooo 
37.000 
38 .OOO 
39.000 
43 .OOO 
45 .ooo 
47.000 
48 .OOO 
51 .OOO 
52 .OOO 
58 .OOO 
59 .OOO 
61 .OOO 
62 .OOO 
63 .OOO 
66.000 
70 .OOO 
71 .OOO 
75.000 
77.000 
78 .OOO 
80.000 
82 .OOO 
85 .OOO 
87 .OOO 
88.000 
9O.OOO 
91 .OOO 
94.000 
95.000 
96.000 
97.000 
98 .OOO 
99.000 

100.000 
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FIGURE 2.6 
Subdivision of the real 
line for the purpose of 

forming group intervals 

TABLE 2.9 
General layout of 

grouped data 

4. A count is made of the number of units that fall in each interval, which is 
denoted by the frequency within that interval. 

5. The midpoint of each group interval is computed for calculation of descriptive 
statistics. The midpoint of the first interval is denoted by 

the midpoint of the second interval by 

and the midpoint of the last interval by 

The intervals and their midpoints are depicted in Figure 2.6. 

1 st interval 2nd interval kth interval 

I ---- 
Y1 Y 2  Y3 

n 
Yk mk Yk+ 1 

6. Finally, for the purpose of computing descriptive statistics, the group intervals 
and their midpoints, m i ,  and frequencies, J;: , are then displayed concisely in a table 
such as Table 2.9. 

Midpoint of 
Group interval group interval Frequency 

For example, the raw data in Table 2.7 might be displayed according to the format 
in Table 2.10. 
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TABLE 2.10 
Grouped frequency 

distribution of 
birthweight (oz] from 

100 consecutive 
deliveries 

Group interval Midpoint Frequency 

If we are confronted with grouped data either in the form of published data from 
a secondary source or from our own data, then we want to be able to compute grouped 
means and variances that are analogous to the arithmetic mean and variance. Suppose 
thatfi observations fall in the ith group interval, i = 1, . . . , k, and that the midpoint 

k 
of the ith interval is mi, i = 1, . . . , k, where n = zi=, fi = total number of 
observations over all groups. The grouped mean is then defined as follows: 

The grouped mean is defined by z:=, hm, zg= yk 

EXAMPLE 2.24 Compute the grouped mean for the data in Table 2.10. 

SOLUTION 

DEFINITION 2.12 mmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
The grouped variance is defined by 

As for the ungrouped variance, the expression for the grouped variance can be sim- 
plified, yielding the following two short forms: 

Short Forms for the Grouped Variance 
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EXAMPLE 2.25 Compute the grouped variance for the data in Table 2.10. 

SOLUTION 

Thus, 

and s, = v549.85 = 23.45 oz mm. 

SECTION 2.8 Graphic Methods for Grouped Data 

In Section 2.7 we concentrated on methods for presenting grouped data in tabular 
form and on numerical measures for describing such data. In this section these tech- 
niques are supplemented by presenting certain commonly used graphic methods for 
displaying grouped data. The purpose of using graphic displays is to give a quick 
overall impression of the data, which is sometimes difficult to obtain with numerical 
measures. 

2.8.1 Bar Graphs 

One of the most widely used methods for displaying grouped data is the bar graph. 

 
A bar graph can be constructed as follows: 

(1) The data are divided in a number of groups using the guidelines provided in Section 2.7. 
(2) For each group a rectangle is constructed with a base of a constant width and a height 

proportional to the frequency within that group. 

(3) The rectangles are generally not contiguous and are equally spaced from each other. 

A bar graph of daily vitamin-A consumption among 200 cancer cases and 200 age- 
and sex-matched controls is presented in Figure 2.1. 

Histograms 

The bar graph tends to work well with grouped data when the groups are characterized 
by nonnumerical attributes, such as {current smokerlex-smokerlnever smoker} or 
{patient gets worselpatient gets betterlpatient stays the same}. If the groups are char- 
acterized by a numerical attribute, such as systolic blood pressure or birthweight, then 
a histogram is preferable. For a histogram, the position of the rectangle will correspond 
to the location of the group interval along the x-axis, and the size of the rectangle will 
correspond to the frequency within the group. 
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A histogram is constructed as follows: 

(1) The data are divided into groups as described in Section 2.7. 
(2) A rectangle is constructed for each group. The location of the base of the rectangle 

corresponds to the position of the ends of the group interval along the x-axis, and the 
area of the rectangle is proportional to the frequency within the group. 

(3) The scale used along either axis should allow all the rectangles to fit into the space 
allotted for the graph. 

FIGURE 2.7 
Histogram for the 

birthweight data in 
Table 2.10 

Note that the area, rather than the height, is proportional to the frequency. If the 
length of each group interval is the same, then the area and the height are in the same 
proportions and the height will be proportional to the frequency as well. However, if 
one group interval is 5 times as long as another and the two group intervals have the 
same frequency, then the first group interval should have a height as high as the 
second group interval so that the areas will be the same. A common mistake in 
the literature is to construct histograms with group intervals of different lengths but 
with the height proportional to the frequency. This representation gives a misleading 
impression of the data. A histogram for the birthweight data in Table 2.10 is given in 
Figure 2.7. 

- Area is proportional 
to frequency. 

109.5 129.5 
Birthweight (oz) 

Stem-and-Leaf Plots 

Two problems with histograms are that (I) they are somewhat difficult to construct 
and (2) the sense of what the actual sample points are within the respective groups is 
lost. One type of graphic display that overcomes these problems is the stem-and-leaf 
plot. 
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A stem-and-leaf plot can be constructed as follows: 

(1) Separate each data point into a stem component and a leaf component, respectively, 
where the stem component consists of the number formed by all but the rightmost digit 
of the number, and the leaf component consists of the rightmost digit. Thus, the stem 
of the number 483 is 48, and the leaf is 3. 

(2) Write the smallest stem in the data set in the upper-left-hand corner of the plot. 

(3) Write the second stem, which equals the first stem + 1, below the first stem. 

(4) Continue with step 3 until you reach the highest stem in the data set. 

(5) Draw a vertical bar to the right of the column of stems. 

(6) For each number in the data set, find the appropriate stem and write the leaf to the right 
of the vertical bar. 

FIGURE 2.8 
Stem-and-leaf plot for 

the birthweight data 
(oz] in Table 2.7 

The collection of leaves thus formed will take on the general shape of the distri- 
bution of the sample points. Furthermore, the actual sample values are preserved and 
yet there is a grouped display for the data, which is a distinct advantage over a 
histogram. Finally, a stem-and-leaf plot can usually be constructed more quickly than 
a histogram from raw data, since the number of data points in each group interval do 
not have to be counted. It is also easy to compute the median and the range from a 
stem-and-leaf plot. A stem-and-leaf plot is given in Figure 2.8 for the birthweight data 
in Table 2.7. Thus, the point 5 1 8 represents 58, 1 1 1 8 represents 1 18, and so forth. 
Notice how this plot gives an overall feel for the distribution without losing the 
individual values. 

There are variations of stem-and-leaf plots where the leaf can consist of more 
than one digit. This variation might be appropriate for the birthweight data in Table 
2.1, since the number of three-digit stems required would be very large relative to the 
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FIGURE 2.9 
Stem-and-leaf plot for 

the birthweight data (g) 
in Table 21 

number of data points. In this case, the leaf would consist of the rightmost two digits 
and the stem the leftmost two digits, and the pairs of digits to the right of the vertical 
bar would be underlined to distinguish between two different leaves. The stem-and- 
leaf display for the data in Table 2.1 is presented in Figure 2.9. 

Another common variation on the ordinary stem-and-leaf plot if the number of 
leaves is large is to allow more than one line for each stem. Similarly, one can position 
the largest stem at the top of the plot and the smallest stem at the bottom of the plot. 
In Figure 2.10 some graphic displays using the SAS UNIVARIATE procedure are 
given to illustrate this technique. 

Notice that each stem is allowed two lines, with the leaves from 5 to 9 on the 
upper line and the leaves from 0 to 4 on the lower line. Furthermore, the leaves are 
ordered on each line, and a count of the number of leaves on each line is provided 
under the # column to allow easy computation of the median and other quantiles. 
Thus, the number 7 in the # column on the upper line for stem 12 indicates that there 
are 7 birthweights from 125 to 129 oz in the sample, whereas the number 13 indicates 
that there are 13 birthweights from 120 to 124 oz. Finally, a multiplication factor is 
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FIGURE 2.10 
Stem-and-leaf and box 
plots for the birthweight 
data (oz) in Table 2.7 as 

generated by the SAS 
UNlVARlATE procedure 

2.8.4 

DEFINITION 2.13 

STEM LEAF 
16 1 
15 5 
15 
14 6 
14 014 
13 557888 
13 222334 
12 5567788 
12 01 11 222234444 
11 5555556889 
11 0012223 
10 5567888899 
10 012344444 

9 568889 
9 12344 
8 556788999 
8 3 
7 
7 
6 78 
6 4 
5 8 
5 
4 
4 
3 
3 2 

----+----+----+----+ 
MULTIPLY STEM.LEAF BY 

BOXPLOT 

given in the bottom of the display to allow for the representation of decimal numbers 
in stem-and-leaf form. In particular, if no multiplication factor (m) is present, then it 
is assumed that all numbers have actual value stem.leaf; whereas if m is present, then 
the actual value of the number is assumed to be stem.leaf x lom. Thus, for example, 
since the multiplication factor is lo1, the value 6 4 on the stem-and-leaf plot represents 
the number 6.4 x lo1 = 64 oz. 

Box Plots 

In Section 2.2.3 the comparison of the arithmetic mean and the median was discussed 
as a method for looking at the skewness of a distribution. This goal can also be 
accomplished by a graphic technique known as the box plot. To describe a box plot, 
the concept of the hinges of a sample must be introduced. To accomplish this, it is 
first necessary to understand the notion of the depth of the median. 

W W W W W W W B B W W W D W W W W W U W W W W W D W W W W W W W W W W W W W W H W B W B W W W W W W W W W W W W W W W W W W W W W  

The depth (m) of the median for a sample of size n is 

(1) if n is even 

n + l  
(2) 2 if n is odd 

The upper and lower hinges can be thought of conceptually as the approximate 75th 
and 25th percentiles of the sample, that is, the points a and along the way in the 
ordered sample. 
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DEFINITION 2.14 ~ m m u ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m m ~ ~ ~ ~ m m ~ m m ~ m ~ m ~ m m m m m m m m ~ m m m m ~ ~ m ~ m m m ~ m m ~ w m m m ~ w m ~ w ~  
The upper hinge of a sample is 

m + l  
(1) The - 

2 
th largest point if m is odd 

m 
(2) The average of the -th and th largest points if m is even 

2 

where m = depth of the median. The lower hinge is defined similarly, starting from the smallest 
point in the sample. 

EXAMPLE 2.26 Compute the upper and lower hinges for the birthweight data in Table 2.7. 

SOLUTION Since n = 100, it follows that the depth of the median (m) = 50. Since m is even, the upper 
hinge is given by the average of the 9 t h  and (F + 1)th largest sample values or the average 
of the 25th- and 26th-largest points in the sample. In the stem-and-leaf plot in Figure 2.10, 
counting down from the top, 1 + 1 + 1 + 3 + 6 + 6 + 7 = 25 points are in the upper 12 
row or above. Thus, the 25th-largest point is the smallest number in the upper 12 row, which 
equals 125 oz. Also, the 26th-largest point = largest number in the lower 12 row = 124 oz. 
Thus, the upper hinge = (125 + 124)/2 = 124.5 oz. 

Similarly, the lower hinge = the average of the 25th and 26th smallest points in the sample. 
Counting up from the bottom, 1 + 1 + 1 + 2 + 1 + 9 + 5 = 20 points are in the lower 9 
row or below, and 26 points are in the upper 9 row or below. Thus, the 25th smallest point = 
the 2nd largest value in the upper 9 row = 98; the 26th smallest point = the largest value in 
the upper 9 row = 99. Therefore, the lower hinge = (98 + 99)/2 = 98.5 oz. mmm 

How can the hinges be used to judge the symmetry of a distribution? 
[ I )  If the distribution is symmetric, then the upper and lower hinges should be approx- 

imately equally spaced from the median. 
(2) If the upper hinge is farther from the median than the lower hinge, then the 

distribution is positively skewed. 
(3) If the lower hinge is farther from the median than the upper hinge, then the 

distribution is negatively skewed. 

These relationships are illustrated graphically in a box plot. In Figure 2.10 the top of 
the box corresponds to the upper hinge, whereas the bottom of the box corresponds 
to the lower hinge. A horizontal line is also drawn at the median value. Furthermore, 
in the SAS implementation of the box plot, the sample mean is indicated by a + sign. 

EXAMPLE 2.27 What can be learned about the symmetry properties of the distribution of birthweights from the 
box plot in Figure 2.1 O? 

SOLUTION In Figure 2.10, because the lower hinge is farther from the median than the upper hinge., .the 
distribution is slightly negatively skewed. This pattern is true of many birthweight 
distributions. am. 

In addition to displaying the symmetry properties of a sample, a box plot can also 
be used to give a feel for the spread of a sample and can help identify possible outlying 
values, that is, values that seem inconsistent with the rest of the points in the sample. 
In the context of box plots, outlying values are defined as follows: 
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DEFINITION 2.15 

DEFINITION 2.16 

EXAMPLE 2.28 

SOLUTION 

SECTION 2.9 

mmmmmmmmmmmwmmmmmmmmmmwmmmmmmmmmmmmmmmmmmmmmmummmmmmmmmmmmmmmmmmm 
An outlying value is a value x such that either 

(1) x > upper hinge + 1.5 X (upper hinge - lower hinge) or 

(2) x < lower hinge - 1.5 X (upper hinge - lower hinge) 

The box plot is then completed by 

(1) Drawing a vertical bar from the upper hinge to the largest nonoutlying value in the sample 

(2) Drawing a vertical bar from the lower hinge to the smallest nonoutlying value in the sample 

(3) Individually identifying the outlying and extreme outlying values in the sample by 0's and 
*' s, respectively 

Using the box plot in Figure 2.10, comment on the spread of the sample in Table 2.7 and the 
presence of outlying values. 

Since the upper and lower hinges are 124.5 and 98.5 oz, respectively, an outlying value x must 
satisfy the following relations: 

Similarly, an extreme outlying value x must satisfy the following relations: 

Thus, the values 32 and 58 oz are outlying values but not extreme outlying values. These values 
are identified by 0's on the box plot. A vertical bar extends from 64 oz (the smallest nonoutlying 
value) to the lower hinge and from 161 oz (the largest nonoutlying value = the largest value 
in the sample) to the upper hinge. The accuracy of the two identified outlying values should 
probably be checked. mmm 

The methods used to identify outlying values in Definitions 2.15 and 2.16 are 
descriptive. Alternative methods for identifying outliers based on a hypothesis-testing 
framework are given in Chapter 8. 

Many more details on stem-and-leaf plots, box plots, and other exploratory data 
methods are given in Tukey [4]. 

Case Study: Effects of Lead Exposure on Neurological 
and Psychological Function in Children 
A study was performed [5] of the effects of exposure to lead on the psychological and 
neurological well-being of children. The complete raw data for this study are provided 
in Data Set LEAD.DAT, and the documentation for this file is given in Data Set 
LEAD.DOC. All Data Sets are on the data disk. 
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In summary, a group of children who lived near a lead smelter in El Paso, Texas, 
were identified and their blood levels of lead were measured. An exposed group of 
46 children were identified who had blood-lead levels 2 40 pglml in 1972 (or in a 
few cases in 1973). This group is defined by the variable GROUP = 2 or 3. A control 
group of 78 children were also identified who had blood-lead levels < 40 pglml in 
both 1972 and 1973. This group is defined by the variable GROUP = 1. All children 
lived in close proximity to the lead smelter. 

Two key outcome variables studied were (1) the number of finger-wrist taps in 
the dominant hand (a measure of neurological function) and (2) the Wechsler full- 
scale IQ score. To explore the relationship of lead exposure to the outcome variables, 
we used the SAS UNIVARIATE procedure to obtain box plots for these two variables 
for children in the exposed and control groups, respectively. These are given in Figures 
2.11 and 2.12, respectively. For this purpose, since the dominant hand was not identi- 
fied in the data base, we used the larger of the finger-wrist tapping scores for the right 
and left hand as a proxy for the number of finger-wrist taps in the dominant hand. 

We note that although there is considerable spread within each group, both finger- 
wrist tapping scores (MAXFWT) and full-scale IQ scores (IQF) seem to be lower in 

FIGURE 2.11 
Number of finger-wrist 
taps in the dominant 

hand for the exposed 
and control groups, 

El Paso Lead Study 

The SAS System 

Utiivariate Procedure 
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FIGURE 2.12 
Wechsler full-scale IQ 

scores for the exposed 
and control groups, 
El Paso Lead Study 

The SAS System 

Univariate Procedure 
Schenratic Plots 

the exposed group than the control group. We will be analyzing these data in more 
detail in subsequent chapters, using t tests, analysis of variance, and regression 
methods. 

SECTION 2.10 Summqly 

In this chapter several numeric and graphic methods for describing data for the 
purpose of 
(1) quickly summarizing a data set and for 
(2) presenting results to others 
were presented. 
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In general, a data set can be described numerically in terms of a measure of 
location and a measure of spread. Several alternatives were introduced for each of 
these measures, including the arithmetic mean, median, mode, and geometric mean 
as possible choices for measures of location, and the standard deviation, quantiles, 
and range as possible choices for measures of spread. Criteria were discussed for 
choosing the appropriate measures in particular circumstances. Several graphic tech- 
niques for summarizing data, including traditional methods, such as the bar graph 
and histogram, and some more modem methods characteristic of exploratory data 
analysis (EDA), such as the stem-and-leaf plot and box plot, were introduced. 

How do the descriptive methods in this chapter fit in with the methods of statistical 
inference discussed later in this book? Specifically, if, based on some prespecified 
hypotheses, some interesting trends using descriptive methods can be found, then we 
need some method to judge how "significant" these trends are. For this purpose several 
commonly used probability models are introduced in Chapters 3 through 5 and 
approaches for testing the validity of these models using the methods of statistical 
inference are explored in Chapters 6 through 13. 

PROBLEMS 

Infectlous Disease 
The data in Table 2.11 are a sample from a larger data set 
collected on persons discharged from a selected Pennsyl- 
vania hospital as part of a retrospective chart review of 
antibiotic usage in hospitals [6]. The data are also given 
in Data Set HOSPITAL.DAT with documentation in HOS- 
PITAL.DOC on the data disk. 

2.1 Compute the mean and median for the duration of 
hospitalization for the 25 patients. 

2.2 Compute the standard deviation and range for the 
duration of hospitalization for the 25 patients. 

2.3 It is of clinical interest to know if the duration of 
hospitalization is affected by whether or not a patient has 
received antibiotics. Can you answer this question using 
either numeric or graphic methods? 

Suppose the scale for a data set is changed by multiplying 
each observation by a positive constant. 

* 2.4 What is the effect on the median? 

* 2.5 What is the effect on the mode? 

* 2.6 What is the effect on the geometric mean? 

* 2.7 What is the effect on the range? 

* Asterisk indicates that the answer to the problem is given 
in the Answer Section at the back of the book. 

Ophthalmology 
Table 2.12 comes from a paper giving the distribution of 
astigmatism in 1033 young men, aged 18-22, who were 
accepted for military service in Great Britain [7]. Assume 
that astigmatism is rounded to the nearest 10th of a diopter. 

TABLE 2.12 Distribution of astigmatism in 
1033 young men aged 18-22 

Degree of 
astigmatism (dioptenr) Frequency 

0.0 or less than 0.2 
0.2-0.3 
0.4-0.5 
0.6-1 .O 
1.1-2.0 
2.1-3.0 
3.1-4.0 
4.1-5.0 
5.1-6.0 

1033 
.................................... 
Source: Reprinted with permission of the Editor, 
the authors and the Journal from the British Med- 
ical Journal, May 7 ,  1394-1398, 1960. 
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TABLE 2.11 Hospital-stay data 

First Received Received 
Duration First, WBC anti- bacterial 

of Sex temp. (x lo3) biotic culture Service 
ID hospital (1 = M, following following (1 = yes, (1 = yes, (1 = med., 
no. stay Age 2 = F) admission admission 2 = no) 2 = no) 2 = surg.) 

2.8 Compute the grouped mean. 2.13 Construct a stem-and-leaf plot of the cholesterol 

2.9 Compute the grouped standard deviation. 

2.10 Plot a histogram to properly illustrate these data. 

Cardiovascular Disease 
The data in Table 2.13 are a sample of cholesterol levels 
taken from 24 hospital employees who were on a standard 
American diet and who agreed to adopt a vegetarian diet 
for 1 month. Serum-cholesterol measurements were made 
before adopting the diet and 1 month after. 

* 2.11 Compute the mean change in cholesterol. 

* 2.12 Compute the standard deviation of the change in 
cholesterol levels. 

changes. 

* 2.14 Compute the median change in cholesterol. 

2.15 Construct a box plot of the cholesterol changes to 
the right of the stem-and-leaf plot. 

2.16 Comment on the symmetry of the distribution of 
change scores based on your answers to Problems 2.11 
through 2.15. 

2.17 Some investigators feel that the effects of diet on 
cholesterol are more evident in people with high rather 
than low cholesterol levels. If you split the data in Table 
2.13 according to whether baseline cholesterol is above 
or below the median, can you comment on this issue? 
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TABLE 2.13 Serum-cholesterol levels before and 
after adopting a vegetarian diet 
........................................... 
Subject Before After Before-after 

Hypertension 
An experiment was performed to look at the effect of 
position on level of blood pressure [8]. In the experiment 
32 subjects had their blood pressures measured while lying 
down with their arms at their sides and again standing 
with their arms supported at heart level. The data are given 
in Table 2.14. 

2.18 Compute the arithmetic mean and median for the 
difference in systolic and diastolic blood pressure, respec- 
tively, between the positions (recumbent and standing). 

2.19 Construct stem-and-leaf and box plots for the dif- 
ference scores for each type of blood pressure. 

2.20 Based on your answers to Problems 2.1 8 and 2.19, 
comment on the effect of position on the levels of systolic 
and diastolic blood pressure. 

Pulmonary Disease 
FEV (forced expiratory volume) is an index of pulmonary 
function that measures the volume of air expelled after 

TABLE 2.14 Effect of position on blood 
pressure 
...................................... 

Blood pressure (mm Hg) 

Standing, 
Recumbent, arm at 

Subject arm at side heart level 

...................................... 
aSystolic blood pressure 
bDiastolic blood pressure 
Source: Reprinted with permission of the American 
Journal of Medicine. 

one second of constant effort. The Data Set FEV.DAT (on 
the data disk) contains determinations of FEV in 1980 on 
654 children ages 3-19 who were seen in the Childhood 
Respiratory Disease Study (CRD Study) in East Boston, 
Massachusetts. These data are part of a longitudinal study 
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to follow the change in pulmonary function over time in 
children [9]. the relationship of FEV to age, height, and smoking status 

The data in Table 2.15 are available for each child. (Do this separately for boys and girls.) 

2.21 For each variable (other than ID), obtain appropriate 2.23 Compare the pattern of growth of FEV by age for 
descriptive statistics (both numeric and graphic). boys and girls. Are there any similarities? Any differences? 

2.22 Use both numeric and graphic measures to assess 2.24 Answer Problem 2.23 for height rather than FEV. 

TABLE 2.15 Format for FEV.DAT 

Column Variable Format or code 

1-5 ID number 
7-8 Age (years) 

10-15 FEV (liters) X.XXX 
17-20 Height (inches) XX.X 
22 Sex 0 = female11 = male 
24 Smoking status 0 = noncurrent smoker11 = current smoker 
................................................................... 

Nutrition 
The food-frequency questionnaire (FFQ) is an instrument 
that is often used in dietary epidemiology to assess con- 
sumption of specific foods. A person is asked to write 
down the number of servings per day typically eaten in 
the past year of over 100 individual food items. A food- 
composition table is then used to compute nutrient intakes 
(e.g . , protein, fat, etc .), based on aggregating responses 
for individual foods. The FFQ is inexpensive to administer 
but is considered less accurate than the diet record (DR) 
(the gold standard of dietary epidemiology). For the diet 
record, a participant writes down the amount of each spe- 
cific food eaten over the past week in a food diary and a 
nutritionist using a special computer program computes 
nutrient intakes from the food diaries. This is a much more 

expensive method of dietary recording. To validate the 
FFQ, 173 nurses participating in the Nurses Health Study 
completed 4 weeks of diet recording about equally spaced 
over a 12-month period and an FFQ at the end of diet 
recording [lo]. Data are presented in the Data Set 
VALID.DAT (on the data disk) for saturated fat, total fat, 
total alcohol consumption, and total caloric intake for both 
the DR and FFQ. For the DR, average nutrient intakes 
were computed over the 4 weeks of diet recording. The 
format of this file is shown in Table 2.16. 

2.25 Compute appropriate descriptive statistics for each 
nutrient for both DR and FFQ using both numeric and 
graphic measures. 

TABLE 2.16 Format for VALID.DAT 
...................................................... 
Column Variable Format or code 

1-6 ID number XXXXX.XX 
8-15 Saturated fat-DR XXXXX.XX 

17-24 Saturated fat-FFQ XXXXX .XX 
26-33 Total fat-DR XXXXX .XX 
35-42 Total fat-FFQ XXXXX .XX 
44-5 1 Alcohol consumption-DR XXXXX.XX 
53-60 Alcohol consumption-FFQ XXXXX.XX 
62-70 Total calories-DR XXXXXX.XX 
72-80 Total calories-FFQ XXXXXX.XX 
...................................................... 



42 CHAPTER 2 I DESCRIPTIVE STATISTICS 

2.26 Use descriptive statistics to relate nutrient intake for 
the DR and FFQ. Do you think that the FFQ is a reasonably 
accurate approximation to the DR? Why or why not? 

2.27 A frequently used method for quantifying dietary 
intake is in the form of quintiles. Compute quintiles for 
each nutrient and each method of recording and relate the 
nutrient composition for DR and FFQ using the quintile 
scale. (That is, how does the quintile category based on 
DR relate to the quintile category based on FFQ for the 
same individual?) Do you get the same impression about 
the concordance between DR and FFQ using quintiles as 
in Problem 2.26, where raw (ungrouped) nutrient intake 
is considered? 

Environmental Health, Pediatrics 
In Section 2.9, we described Data Set LEAD.DAT (on 
the data disk) concerning the effect of lead exposure on 
neurological and psychological function in children. 

2.28 Compare the exposed and control groups on age and 
gender, using appropriate numeric and graphic descriptive 
measures. 

2.29 Compare the exposed and control groups on verbal 
and performance IQ, using appropriate numeric and 
graphic descriptive measures. 

2.30 Did your answer to problem 2.28 influence how you 
approached Problem 2.29? If so, in what way? 
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